

Advanced Micro Devices
AMDASM™ /80 Reference Manual

MDS Resident Microassembler

August 1977

This Copprroduced by WhitePubs ©

or study purposes

Copyright © 1977 by Advanced Micro Devices, Inc.
Sunnyvale, California
August, 1977

Table of Contents

AAVANCEA MICTO DEVICES ...ttt ettt ettt h e e e e bt e ettt e e ahe e e aa e e e et et e e an e e e e ane e e ebn e e e nneeenaneeean 3
AMDASM™ /80 REfErenCe MaNUAL..........ii ittt e et e et e e aa e e e s e e e ebn e e e anneeesanee s 3
MDS ReSIAENt MICrO@SSEMDIETeiiiiiiiiiiie ettt ettt e e st e ekt e e st e e e sab e e e e bre e e enreeeneneeeas 3
LI O F- o (= it PP TRTUROSOPPPNE 9
I N [0 (oo [UTod 1 To =T aTo N U oo =T PSP PUPTPTN 9
1.2 LaNQUAQGE COMPAIISONSieeiieeiaiuiiieaeaaaeteeeeaeaateeeaaeaaaaaeeeaaeaaansteeeeaeaneeeeaaeaanssaeeaesaannsseaaeaaansseeeaeeannsseeaaeaanses 11
L2 B o e o B Y = g o - Vo [SRS 11
1.2.2 ASSEMDIY LEVEI LANGUAGEoiiiiiiiiiiie ettt ettt e e e ekttt e e e e e nae et e e e e e nnbeeeaeesnnteeeaeeaannreeeaann 11
1.2.3 Maching LeVel LANGUAGEccooiiiiiiiii ittt ettt et e e et n e e e e e e e e nnes 11
2 Y [T {o] o4 Yo =T 1 412111 o TSR 11

1.3 DefiNitionN Of TEIMIS ...ttt et e e et e s e e e s bt e e anr e e e naneeesneee s 12
T4 DefiNtiON PRaSEcooiiiiee ettt e bt e et e et e e s 13
1.5 ASSEMDIY PRASE ...ttt e e e oottt e e e e e ettt e e e et eeeeaeeaanneeeeaeaaanneeeeaeeannraeeaaeaannes 13
G (40T o] (=Yg =T a1 =Y i o o PP PUPUPTRTN 13
A N1 0 g o L=Y @ o 1Y = 4o o PR PUPTUURT 13

D O o - o) (= S U U U RUOPPPPRE 14
2.1 DEfiNItION PRASE ..ottt ettt h ettt 14
2.2 DEfINItION FlE ...ttt ettt e e bt et n et e bt e e et e s 14
2.3 Assembler Control STAtEMENTSeiiiiiiiiii e 15

b Tt N I I PRSP 15
2.3.2 WORD ...ttt e h b h et bt e a et bt ARt R e R bt Ee e eh bt ekt e eab e e bt e a b e e abeennbeenbeeenne et 15

b T B I 1S O U UUPPPR 15

b I S N @ | 1S PO UPPUPR 16

b TS T =1 | USSP 16

2.4 Definition StAtEMENTSooiiiiiii ettt 17

b St N =L 1O U UPPUPR R 17
N | ! USROS 18
b B U | = S U PUPPPRR 18
244 Examples of EQU, SUB, DEFcoooiiiii ettt e e e e e e e e e e e aaaaaeeeeeeaaaaans 19

P2 T Oo 101 11 a1 =Y i o] o O ST O PP PRSP PPPP 19
2.6 ComMMENE STAIEMENTS .. .oeiiiiiii ittt e e bt et e bt e nes 20

P A =101 1 O OO PRSP PP OP SR PPPP 20

P T B T=T Fo [F= (o] RSP RRR 21
2.9 EXaMPIES Of DESIGNATOTScoiiiiiiiiiie ettt e e ettt et e e e e e aee e e e e e e aanteeeaaeaantaeeeaeeaannseeeaeeansbeeaaeeaannnneas 22
220 0T 1= o LSS 23
P2 B B 00T o 11 7= 31 £ O OO PP PR PSP PPPP 23

P2 I Y o To 11T - T ST P PP PRSP PPPP 24
213 MOdifiers @s AHDULESoii e 25

2.13.1 Order Of PrECEAEBNCEveeeeeee et e e e e e e ettt e e e e e e e e e e e et et et aaaeeeeaeeeseessraaeaaeeaaeeees 25

2.13.2 Radix Base Defaults t0 BiNAry............ooiiiiiiiiiii ettt e e e e e e e e enaeee e an 25
2.13.3 PreCautions fOr HE.......ooi ittt e et 25

W U N (141010 I R o= Vo [To) PSP U PSRRI 25
P2 T B To T3 A 07 =T OO P PP PRSP PUPP 26
216 VAKIADIES ...t e bt et et e e bt r e e e et 27
2.16.1 COITECE VArADIES ...ttt et e bt e e e e e e et e e b e e e e s e e e e e e s 28
2.16.2 INCOMTECE VaATIADIES.eeiieiie ettt s bt e et 28
217 Definition File — RESEIVEA WOTASccuiiiiiiiiiitie ettt sttt e et nes 29
2.18 Definition Phase Error Messages and Interpretationsoooi i 29
B B O 4 =101 =Y o 1 1 SRS PUPPESPN 31
3.1 ASSEMDIY PRASE ...ttt b e e b 31
3.2 Assembly File StatemMENtSccc.oiiiiiiii e 32
3.3 Assembler Control STAtEMENTSiiiiiiii et 32
T T N I 1 I PO PP 32
TR 307 N S LSO U RSP RUPRPRI 33
TG TG T N[] S PR OU RSP PPR 33
B.314 SPAGCKE ... e h bbbt h e bt he e bt e b et be e nhe e be e naeeenreas 33
T T T =N | = O U OT RSP UPPRI 34
T TS T =1 N OO U RSP PRPRI 34
3.4 Program Control STAtEMENESoouiiiiiiiiiii e 34
K IR ©] {C PP O U SOPRUPRPR 34
Bid. 2 RES .t h e h e E e bt £ e e eh e e ARt e R e e eA bt e he e e b e e b et e beenhe e beenaeeenrean 35
R T N N [PSR SOPRPRPRI 35
3.5 Constant Definition StatemMeENtcooiiiiiiiii e 36
N R =1 U PSP U RSP POPR 36
3.6 Executable INStruction State@mMeNtsooiiiiiiiii s 36
3.6.1 Executable Instructions Using FOrmat Namesc..ooiiiiiiiiiiie e 36
3.6.2 Free Format Statement FFo e 37
3.7 OVErIaYiNG FOMMASottt e st e e bt e s e e st e et r e e e e s e e e e n e 38
KR S I Oo 101 11 a1 =1 i o] o O PP PP PR P SR PUPP 39
3.9 ComMMENE STAIEMENTS .. .ottt e e bt n e e bt 39
310 LADEIS OF NAMES ...ttt ettt s et e e b et e s e e sa et e et e e eer e 39
311 ENtry POINE SYMDOIS ...ttt e e s e et e e e et 40
312 CONSTANES ..ttt et e e bt n et e e bt e e e e e na e e et nees 40
313 CONSIANT LENGLNS ...ttt 40
3.14 CONSIANT MOGIIEIS ...ttt ettt ekt e e s et e et e e ne e e e s e e e et e nnes 41
3.15 Variable Field SUDSHIUION (VFS)ttt ettt sbe e s 42
3.15.1 Required SUDSHIULIONScoiiii e e e e e e e eaeaeeeeeeeeeaessenannsnrnranens 42
3.15.2 SUDSHItULION SEPAIATOrSoo ittt e ettt e e e et e e e e e e s nee e e e e e e anneeeeeeeanreeeaaaaannes 42

3.15.3 Fitting Variable Substitutes to Variable Fields............ccccooiiiiiii e 43

3.15.4 Paged and Relative AdAreSSiNgueiiii ittt e e et e e e e e ettt e e e e anaeeeaaeaaanneeeeaeeanreeeaaaaannes 44
3.16 Hexadecimal AtHDULEoi et 45

R T I A b (o] (YT (o] [T TSR 45
3171 EXPreSSION OPEIAtOrS.coiiii i i i ettt et e e e e e e e e e e e e e e s e e et aaebeaaeeeeeeeeeaaaeaaaeeaesesaaaaanssnnsnsnrnnens 45
3.17.2 Order of EXpression EValUation..............c..uuuiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e e enenrnranees 46

R T B =TT =Y o1 o) (Y @ U1 { o1V | RSP RRR 46
3.19 AsSembler SYMDOI TADIEoiiiii e et 46
3.20 Assembler Entry POINt TADIEccuiiiiiiii et 47
3.21 Assembly File — RESErvVEd WOIASoiiiiiiiiiie ettt 47
3.22 Assembly Phase Error Messages and Interpretations ... 48
3.23 Error Messages Which Halt EXECULIONcooiiiiiiiii e 50

L O 0 T-T o] (=T P E U TRRRRUOSPPPOE 51
4.1 AMDASM/80 Execution (The Original SYSEeM)ccciiiiiiiiiiii et 51

oI O =T o) (=Y Y P PUPPPPR 53
5.1 Sample of AMDASM/80 PrOCESSINGuvtiiiiiiiiiieiiiie et ste ettt et e e s e e et e s anr e e e nare e e anneeennees 53

(ST ¢ =T (=1 SV 2 PSP U PO ORUOPPPPOE 58
6.1 AMPROM/BO0 POST PrOCESSINGeiiueiiiiitiie ittt ettt ettt e et e e e st e et e e san e e e sere e e et e e nnees 58
I o @ 1Y @ o = 1o T4 11T] o SR RRR 58
6.3 POSt ProCesSING FEAUIESccoiiiiiiii ettt e et 61
6.4 EXECULION OF AIMPROM ...ttt ettt e e e et e et e bt e et eae e et eaeeaeeemeeeseemeeaeeemeesreanseseeanseaneanseeneanes 61
6.5 APROM FilENAMES ...ttt ettt e ettt e s et e ekt e e ae e e e sa et e et et e e e e e e ser e e e enteeennees 62
6.6 Required AMPROM INPULoooiii ettt e e e e e e e e e e e e e e e et bt b e e e e e eeeeeeeeaaaaaaaaaeaesesaaanasnsnsnsnrnnnns 63
6.7 Input SUbSHItULES Permitledottt e ettt e e e et e e e e e e e e e e e e nnneeas 64
6.8 BNPF Paper Tape OPtioN ...cociiiiiiiiiiii ettt e e e e e e e e e e e e e e e e e e e a e e e e e e eeeeeeaaaaaaaeeeeaesasaaasnsssssnrnnnns 65
6.9 Hexadecimal Paper Tape OPLiONccccoiiiiiiiiiiieeeeeee e e e e e e e e eaaaaaaaaeeeeesasanenanssnsnrnnans 66
6.10 AMPROM EITOr IMESSAGES. ... ueieiieeiaittiiee e et ee e e ettt et e e e ekttt e e e e e aeeeeaeeeaneeeeaaeaanbaeeeaeaaannsseeaeaansbeeeaeeaannnneas 67

A O =T (=Y YA | OO PUPPPPR 68
7.1 EXample of AMPROM/BOcoiiiiiiieitie ittt ettt ettt ettt b e bbbt esa bt ekt e s ae e e bt e esbeenbeesabeenbeesaneeneee 68

vi of 70

List of Figures

Figure 1-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4

From Bit-Slice Design: Controllers @and ALUS:oooiiiiiiiiii ettt 9
Am2900 Learning and Evaluation Kit ArchiteCtureccoiiiiiiiiii e 53
Example of Fields and FUNCHONS ..o e e e e e e e e e e e e e e e e 54
DEfiNITION FIIE ...ttt ekt s e e e bt e e s et e e et e e s b e e e e nr e e e e e re s 55
FIOWCHhAIt Of EXAMPIEuuiiiiiiiiiiiiiei et e e e e e e e e e e e e e e e e s e e e e a e e e e e e eeeeaaaaaaaeeeeeaeaaaann 56
Assembly Out put BIOCK FOIMAL ...ttt e e et e e e e e e e e e e enees 57
Bt IMAIETIX ..ttt e bt e e e R et e et ne e e e e e nees 58
RS- Taa] o] (=T @ 1Y Y- T o RSP 58
@ Y Y -1 o SRR 60
Organization Of PROIMS ...ttt e ettt e e e ettt e e e e e ate e e e e e e e naseeeaeeansseaaaeaannaenaaaan 60

vii of 70

List of Tables

Table 1-1 Terms and DEfiNItIONSc.oii ittt e et e aar e e s e e e ab e e s e e e e naneeesneee s 12
Table 2-1 Designators and their DEfiNItiONSooo et e e e e e e e eaeeea e 21
Table 2-2 Example Field DefinitioNsS...........ccoi oo r e e e e e e aaaaeaeeeeeeeeaaessenannsaenrnnees 23
Table 2-3 Modifiers @nd their ACHONSueiiiiiii ittt et s e e ab e e s ear e e s e e sneee s 24
Table 2-4 Correct Use of Modifiers with CoNStantS............cueiiiiiii e 24
Table 2-5 Correct Field Content and MEaANINGouuiiiiiiiiiii ettt e et e e e e e e taee e e e e e anreeeaeeaenneeeeaaan 28
Table 2-6 Incorrect Field Content and MEaNINGoiiiiiiiiiiii et e e et e e e e e aee e e e e e snreeeaeeaannbeeeaaaan 28
Table 3-1 Implicit Length Attributes of CONSTANTS..........ooi i a e e ee e 41
Table 4-1 AMDASM/B0 OPLIONSviitieiuieitie ettt ettt ettt e ae e e bt e aa bt e bt e aa bt e sbeeeabe e sk e e aabeeabeeanbeeaaeesabeenbeeenneenens 52
Table 6-1 AMPROM/BO OPtIONSiitieiuieiitieate ettt ee bttt e s et e bt e bt e sa bt e bt e aab e e sbeesabe e st e e aabeeabeeeabeeaaeeenbeesbeeenneenens 62
Table 6-2 AMPROM/80 INPUt SUDSHIULESoiueiiiiiiiicie ettt bbb e 64
Table 6-3 BNPF Paper Tape CONTENESooiiiiiiieiiiiii ettt e ettt e e e e ettt e e e e e e nbe e e e e e eannaeeeaeeeannseeeaeaaannneeeaaan 65
Table 6-4 Hexadecimal Paper Tape CONLENTSuuuiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e e s e e e eaasaenranees 66

viii of 70

1 Chapter 1

1.1 Introduction and Purpose

An assembler is a program that “reads” another program written in a symbolic form and produces an output of binary
words corresponding to the symbolic input. A microprogram assembler is a special kind of assembler, formally called
a “meta-assembler”. AMDASM is a meta-assembler.

An assembler read a program written in a Symbolic language and produces a binary language referred to as
machine-level language. The Assembly symbolic language is referred to as assembly language. It is defined on the
creation of the assembly language, which is based on specific hardware and can be programmed for many activities.
The user in this case does not have any input to the symbolic assembly language nor to the format of the machine
language.

A meta-assembler differs from an ordinary assembler in that most of the symbols are defined by the user prior to the
assembly. A meta-assembiler is specific to the user’s defined hardware. The user also controls the format produced
as output by the meta-assembler, which is the “microword”. The microword is customized by the user (designer).

In an ordinary assembler, the user may define the labels for instructions and symbols for particular data words, but
the instructions themselves, including the associated word length and format are in general already defined by the
assembler that belongs to the hardware being run. This makes sense since the assembler is designed to convert an
established set of formats into “machine language” for a particular machine (Am9080A; PDP machines; VAX
machines; etc.) When you purchase a computer (such as a PDP or a VAX), the assembler is designed and ships with
it. Multiple users would be programming different functions within the limits of the fixed architecture of the machine.

A meta-assembler, called a microprogram assembler or microassembler, however, must be far more flexible than a
traditional assembler, since it must be useful for many hardware configurations. Each different hardware configuration
may require a different format and may require word length (microwords) over 100 bits in length. A sample is shown
below. The number of bits in any field and the number of different fields required is up to the user for the specific
design.

Figure 1-1 From Bit-Slice Design: Controllers and ALUs:

Machine—-Level Instruction

OpCode Destination Register R1 Source Register R2

L[J— 8 7-4 3-0

Microword Instruction - bit fields and bit field widths (number of bits) will vary with the design

Branch | Am2910 | CC IR Am2903 | Am2903 | Am2903 | Am2903 Status Shift ETC.
Address | INST MUX LD A and B | Source ALU Destination | Load MUX
16 bits 4 bits 1- bit 1 bit 8 bits 16 bits 4 bits 16 bits 1 bit 1 bit X bits

The microprogram instruction format is under the user’s (designer’s) control and totally depends on the architecture of
the hardware to be controlled. The Machine level instruction format is fixed.

Moreover, in a microassembler, a format rarely establishes the entire contents of the microinstruction, but rather
defines only a few bits in the total microword.

These requirements imply that a microprogram assembler must consist of two distinct operations. The first operation
is the establishment of word length and the definition of formats and constants: The Definition File. The second
operation is the traditional assembly process (the Assembly File) performed on a program the uses the formats and
constants from the Definition File. The microprogram assembler, therefore, differs from the traditional assembler in
that it may be configured by the user to accept any word size, formats, and constants the user requires.

90of 70

The assembler written by Advanced Micro Devices is a very powerful meta-assembler, useful not only with the AMD
2900 family, but with any microprogrammed machine. [DEC had a meta-assembler that could be used in the same
way.] These meta-assemblers operate in two phases: the Definition Phase; and the Assembly Phase.

The Assembly Phase executes second and is like any other assembler. It read a symbolic program, handles most
common assembler features such as labeling and setting the address counter, and produces a binary output, various
listings, and cross-reference tables.

The Definition Phase is executed first to set up the table that associates the user’s format names and constant names
with their corresponding bit patterns.

The Definition Phase lets the user define symbols for formats (format names), and build the microinstruction word
length. In the Definition Phase, the length of the microinstruction is defined first. The word may be any length (1 128
bits). [Today’s systems can have complex microwords of over 300 bits in length. This document and program was
designed in 1977, pre-personal computers.] This is adequate for all but the most sophisticated processors. [In 1977,
the simplex computer design was as far as we had envisioned.]

Each of the user-defined symbols has a specific bit pattern associated with it. [Defined by the part controlled or
supplied by the designer of a given module.] A format name is used to define all, or part, of one microinstruction. The
format definition may consist of:

* Numeric fields, which are defined to contain specific bit patterns.
* Variables, which will be filled in when the format is invoked.
* “Don’t Care” states.
Once the definition Phase has been executed, its output may be retained and used by future programs.

A useful feature of the AMD Meta-assembler is that “don’t care” states are retained until defined, which may not
happen until after the assembly process, during a third, or post-processing phase. A listing of the microprogram at the
conclusion of the assembly phase shows an “X” for every undefined bit. This is useful during the development
process before the microword length has been optimized by sharing fields.

Following assembly of the user’s program, a file is retained which contains the assembled microprogram. This file is
then available for post-processing to create paper tapes [1977] for PROM blowers. [Today’s PROMs and EPROMS
and other memory units are programmed digitally.] The output utility can select columns and rows for a given PROM
tape, freeing the user from any restrictions regarding the organization of the microprogram memory, and simplifying
the generation of a new tape for each of the many PROMs in the system.

The program to be assembled may be written using any of the features specified during the Definition Phase. In the
simplest case, the Assembly Phase source program might be written using just strings of ones and zeros, with the
Definition Phase consisting only of the microinstruction word length. At the other extreme, the Assembly Phase
source program may refer to multiple format names from the Definition Phase for each microinstruction. Any number
of formats may be overlayed to define a single microinstruction, as long as the defined or variable fields of each
format fall into the “don’t care” fields of the other formats invoked. A user might define a set of formats specifying
sequence control operations, another set for data control, and a third for memory control.

The AMD assembler has been written to maximize its flexibility and ease of use for hardware designers. Every effort
has been made to make the program proficient on the machine and efficient at the human interface, with a minimal
knowledge of the host machine’s operating system required.

10 of 70

1.2 Language Comparisons

1.2.1 High-Level Language

High-level languages are fairly free format, i.e., they have few columnar placement restrictions on the coding form
(free-form), use pseudo-English mnemonics (LET, GOTO, IF), and have prewritten functions. Their capabilities
include arrays, loops, branches and subroutines, with the emphasis on structured programming support with IFTHEN-
ELSE, CASE and PROCEDURE statements. High-level language instructions translate into 6 or more machine level
instructions, cutting the time to generate the program. Ten high-level commands could translate to sixty machine level
instructions. Different languages have different ratios. Different instructions (commands) within the different
languages have different ratios of translation.

1.2.2 Assembly Level Language

Assembly-level languages have a more restricted format, require a precise data definition, may involve the
programmer in program placement in memory, and use mnemonics for instructions but have more of them. Most
instructions or statements are restricted to one operation - hence the approximate one to one translation ratio. The
assembly level programmer in general must know more about the machine being used than the programmer who
writes in FORTRAN or BASIC.

1.2.3 Machine Level Language

Machine-level languages are the closest to the system of the software level languages. They are usually written using
an encoding of instructions, data and addresses in either octal or hexadecimal notation are more tedious to construct
and debug and are more restrictive in the format required than the assembly level languages. They can require more
specific detail from the programmer, depending on the complexity of the system being programmed.

1.2.4 Microprogramming

The machine level instructions are what the computer control unit (the CCU) receives. In a microprogrammed
machine, each machine level instruction (referred to as a macroinstruction) is decoded and a microroutine is
addressed which, as it executes, sends the required physical control signals in their proper sequence to the rest of
the system. This is where the software instruction via a firmware microprogram is converted into hardware activity.
The translation ratio is not predictable.

11 0f 70

1.3 Definition of Terms

Since there are no standard terms associated with microassemblers, the more common terms used in this manual
are listed below.

Table 1-1 Terms and Definitions

Term Definition
A Indicates a required blank character.
Name or label 1-8 characters, which are assigned a value by the

programmer or the assembly process. Labels are used
only in the Assembly File.

Constant A specific pattern of 1-16 bits.

Constant name A name for a constant.

Field A group of adjacent bits in a microinstruction.

Format A model for a microinstruction consisting of fields which

contain constants, variable, and “don’t cares”.

Format Name A name for a format (recursive definition!)

Line An input line of up to 128 characters on a console,
teletype, a paper tape reader, or a diskette file. (this is
1977.)

Modifiers Symbols (*%:-$) which indicate that the data for a given
field is to be modified.

Attribute A modifier, which is permanently associated with a field.

Designator A symbol (V, X, B#, Q#, D#, or H#), which indicates the

type of field or constant: variable (V). “don’t care” (X),
binary (B#), octal (Q#), decimal (D#), or hexadecimal
(H#).

Delimiters A symbol (:,/) which indicates the end of a name, the end
of a field, or the continuation of a statement on another
line, respectively.

Default Values The value, which will be substituted if an explicit value is
not specified.

Options Choices available which indicate the input and output
devices to be used, the type of output listing desired, and
processing of one or both phases (Definition and
Assembly).

{ } Braces indicate that the enclosed parameter is optional

12 of 70

1.4 Definition Phase

The AMDASM Definition Phase includes the following features:
* A name is a packed group of 1 to 8 characters.
* A name may be assigned to a constant value.

* A name may be used to define a format whose fields are given as variables, “don’t cares”, explicit bit
patterns (values), or constant addresses by using appropriate designators.

e Blanks may be used to improve readability.
e Microword length may vary from 1 to 128 bits.

* Modifiers include: inversion, truncation, negation, and designation of a field as an address field to be right-
justified (placing a value in a field at the right with leading bits set to zero).

e The ability to set a “page” size via the attribute $. This permits error detection when the Assembly Phase
calls for a jump or branch to an address which is on a different “page” of the microcode.

Data from the Definition Phase may be retained for use with subsequent Assembly Phase source programs and/or it
may be modified as desired.

1.5 Assembly Phase

The Assembly Phase provides for input of the microprogram source statements, conversion of format and constant
names to their appropriate bit patterns, substitution of values for variable fields in the format, and generation of listing
and binary output. The assembly source program will use references to format names and constant names from the
Definition file. It will also contain statements that associate labels with addresses, control assembler operation, and
provide program location counter control.

The AMDASM Assembly Phase includes the following features:
* A microword may be assembled by referring to one or more format names from the Definition File.

* A microword whose format was not specified in the Definition File may be specified by using the built-in free-
form format command.

* The programmer may control the program location counter to set the origin and/or to reserve storage.
e The programmer may choose one of four different output-listing formats.
* A constant may be defined using values and/or expressions.
* Errors are detected and listed. Severe errors cause processing to halt.
Output of the Assembly Phase is an object file that contains the complete microprogram. Post processors can directly

convert this object file to any form needed, such as hexadecimal or BNPF punched on paper tape.

1.6 Implementation

AMDASM/80 operates on the Intel Intellec® MDS-DOS System under the ISIS-I11° Operating System.

1.7 Assembler Operation

AMDASM is placed into execution by control statements from the console input device.

The Definition file is processed and if it contains no errors the Assembly Phase begins. Assembly Pass 1 assigns
values to Assembily file labels and allocates storage. Pass 2 translates the Assembly File source program into Object
code.

" Intel and Intellec are registered trademarks of Intel Corporation.

13 0of 70

User-selected options determine whether the Definition Phase is to be executed or if a previous execution of that
phase has already established the table of formats in a file that will be used by the Assembly process.

The ISIS-II® operating system allocates all necessary input and output resources, such as files, automatically.

2 Chapter 2

2.1 Definition Phase

The definition phase allows the user to define the microword length, constants, and formats which will be used to
write source programs for the target machine.

2.2 Definition File

The definitions are input via a sequence of instructions called the Definition File whose content includes the following
items:

TITLE
WORD n

Format definitions

Constant definitions
Assembler control statements
Subformat definitions

Comment statements

END

The control statement WORD must appear as the first statement in the Definition file after the optional TITLE
statement.? The END statement must be the last statement in the Definition File.

The other statements (shown boxed) may be interspersed throughout the body of the file.

To facilitate readability, blanks may appear in most parts of these statements, and an entire blank line mat be
inserted by entering a semicolon and a carriage return.

% TITLE should not really be optional — poor programming choice if it is.

14 of 70

2.3 Assembler Control Statements

Control statements are used to set microword length, control printing, and indicate the end of the Definition File
statements.

2.31 TITLE

If the user wishes to have a title printed on the Definition File statements, the first statement input should be TITLE.
The general form is:

form:

TITLEA title desired by user

TITLE must:
* Begin on anew line.

* Be followed by a blank and a maximum of 60 characters.

2.3.2 WORD

WORD must be the first statement input by the user after the optional TITLE is given. Its general form is:

form:

WORDA n

WORD must be followed by a decimal integer value n which indicates the microword size in bits (range 1-128).
WORD must:

* Contain no embedded blanks between the letters of the control statement WORD.

* Be followed by at least one blank and 1 to 3 decimal digits.

e Be thefirst input line (second input line if TITLE was used).

* Begin on a separate line.

IF WORD is omitted, assembly will halt as the Definition Phase must know the size of the microword to proceed.

233 LIST

LIST indicates that the following statements are to be printed whenever printing of the Definition File input is
requested. This feature will be most useful when correcting or modifying a Definition File. (AMDASM selects LIST as
the default option. NOLIST must be specified if the user does not want to print the Definition File source statements.)
The general form is:

form:

LIST

15 0of 70

LIST must:
* Begin on anew line.
* Be followed by at least one blank or a carriage return.
* Precede the Definition File statements that are to be printed.

e Beinterspersed between complete definition statements.

2.3.4 NOLIST

NOLIST turns printing off, and no printing of the Definition File input statements will occur until LIST is encountered.
However, any source statement containing an error will still be listed. The general form is:

form:

NOLIST

NOLIST must:
* Begin on anew line.
* Be followed by at least one blank or a carriage return.
* Precede the Definition File statements that are not to be printed.

* Beinterspersed between complete definition statements.

2.3.5 END

END indicates the end of the Definition File. If END is omitted an error message will be printed but processing will
continue. The general form is:

form:
END
END must:
* Begin on anew line.

e Be the last statement in the Definition File.

* Be followed by at least one blank or a carriage return.

16 of 70

2.4 Definition Statements

Definition statements are used to define constants, full-microword formats, or partial microword formats. The general
form of thee statements is:

form:

name: definition wordA field1, field2, ..., fieldn

The definition words are:
EQU
DEF
SuB

241 EQU

EQU is used to equate a constant name to a constant value or expression. The general form is:

form:

name: EQUA constant (or expression) [; comment]

This equates the characters given in the name position to the value of the constant or expression. Only one
expression or constant is permitted following the EQU.

The following set name a “COUNTER” = 1011010.
COUNTER: EQUA B#1011010
Future references to the bit pattern 1011010 may be made by using the word COUNTER.
Each EQU must:
* Begin on anew line.
* Begin with a name:
e The name: must be followed by EQUA—blanks between the “:” and EQU are optional.
* Contain a constant or expression that represents the bit pattern for one field.
* Define a value that can be represented in 16 bits (216 — 1 maximum).
Each EQU may:
* Be followed by a semicolon and comment after the constant or expression.

* Be continued on additional lines by using / (forward slash) as the first nonblank character in those lines.

* Be used in the Assembly File as well as in the Definition File.

17 of 70

2.4.2 DEF

DEF is used to define a complete microword format establishing the contents of unvarying portions of the microword
and establishing the position and length of variable and “don’t care” fields. In addition, default values for variable
portions of the word may be specified. The general form is:

form:
name: DEFA field1, field2, field3, . . ., fieldn

Each DEF must:
* Begin on anew line.
* Be preceded by a name.
* Be followed by one or more blanks, then the fields, separated by commas
* Have the sum of the lengths of all fields exactly equal to the microword length specified by WORD.
e Specify every bit in the microword in terms of ones, zeros, “don’t cares”, or variables.
A DEF may:
* Contain blanks between name: and DEFA.
* Contain 1 to 30 fields separated by commas.
* Be continued on additional lines by using / (forward slash) as the first nonblank character in those lines.
* Be followed by a semicolon and comment after any full field is defined.
e Contain (in any field) a subformat name or constant name that has been PREVIOUSLY defined.
* Contain a variable, “don’t care”, constant or expression in any field.

* Contain a variable field that specifies a default value for the field. The default value may be a constant or a
“don’t care”.

* Be overlayed on “don’t care” fields with another format to obtain a complete micrtoword d uring the
Assembly Phase. Overlaying on other than “don’t care” fields will result in errors, so this feature must be
used with care.

2.4.3 SUB

SUB is used to define a subformat that is a portion of the microword. A subformat is the same as a format except that
it contains fewer bits than the full microword. The fields may be constants, variable, or “don’t cares”. Its gerneral form
is:

form:
name: SUBA field1, field2, field3, .. ., fieldn

Each SUB must:
* Begin on anew line.
* Be preceded by a name.
* Be followed by one or more blanks, then the fields, separated by commas

. Precede the DEF in which it is first used.

18 of 70

* Not be used in the Assembly file.
A SUB may:
* Be less than a microword length in bits.
* Contain 1 to 10 fields separated by commas.
* Beused as a field in a DEF.
* Be continued on additional lines by using / (forward slash) as the first nonblank character in those lines.
* Be followed by a semicolon and comment after any complete field.

e Contain (for any field) a constant name that was PREVIOUSLY defined, a constant, expression, variable, or
“don’t care” specification.

A SUB will be useful when several formats contain identical adjacent fields. IN this case, the subformat name may be
used in each DEF whenever these fields occur.

2.4.4 Examples of EQU, SUB, DEF
EQU might be written as:
R2: EQUA B#010

This defines the name R2 as a 3-bit constant with the bit pattern 010. Whenever the symbol R2 is used, the bit
pattern 010 will be substituted

SUB might be written as:
SHFTRT: SUBA 3V, B#10110, 5X

This defined SHFTRT as a subformat with a 3-bit variable field (3V), a 5-bit constant field (B#10110), and a 5-bit
“don’t care” field (5X), for a total of 13 bits.

DEF might be written as:
ADD: DEFA 3V, B#10110, 5X, B#10110, 5X, B#0011, 4X, B#010
This defines ADD as a format with:

* A 3-bit variable field (3V)

* A 5-bit constant field (B#10110)
e A b5-bit “don’t care” field (5X)

* A 5-bit constant field (B#10110)
* A 5-bit “don’t care” field (5X)

* A 4-bit constant field (B#0011)
* A 4-bit “don’t care” field (4X)

* A 3-bit constant field (B#010)

This gives a total microword length of 24 bits.

Alternatively, the same microword could be written using the subformat name SHFTRT and the constant name R2
(previously defined) by writing:

ADD: DEFA SHFTRT, B#0011, 4X, R2

2.5 Continuation

Any statement may be continued on additional lines by placing a / (forward slash) as the first nonblank character in
those lines.
A continuation must:

* Have a slash as the first nonblank character in its line.

* Preferably be indicated after a complete field (including the comma) has been given on the preceding line.

* Never occur between the designators B, D, Q, or H, and the # sign.

19 of 70

Examples of continuation are:
SHFTRT: SUBA 3V, B#10110,
15X
ADD: DEFC 3V, B#10110, 5X,
/B#0011, 4X, B#010

2.6 Comment Statements

A comment statement is used to provide information about program variables and program flow. The general form is:

form:

; comment text

Note: for structured microcode, every single line gets a comment at the minimum. This methodology works. Saves
time. Aides in debug and test. Aides reviewers.

A comment may be a full or partial line. The assembler ignores all data from the semicolon to the end of the input
line.

Comments must:
e Begin with a semicolon.

* Be placed after a complete field if used within a DEF or SUB statement, in which case subsequent fields for
the DEF or SUB must begin on a new line with a / (forward slash) indicating that they are a continuation of
this DEF or SUB.

For example:

1. SHFTRT: SUBA 3V, ; this is a shift-right statement
/B# 10110, 5X; which is continued on a second line
; the ADD given below is a complete microword format
ADD: DEFA SHFTRT, B#001, 4X, R2
; Total number of bits for SHFTRT is 13
; the bit pattern for SHFTRT will be substituted

I

7. ;inthe ADD given above

Statements 3, 5, 6, and 7 are full comment lines. Statements 1 and 2 are statements to be processed but all
characters after the ‘semicolon’ will be treated as comments. The SUB begun in statement 1 is continued in
statement 2 where “/” indicates continuation.

2.7 Names

Names may be user-defined constant names, format names, or subformat names.
Names must:

* Be the first element in a statement.

* Begin with an alphabetic character (A-Z) or a period (.).

* Be terminated by a colon (:).

* Contain a maximum of 8 characters not including the colon.

* Not contain any embedded blanks.

20 of 70

* Be followed by EQU, DEF, or SUB.
* Contain only alphabetic characters (A-Z), a period (.), or the digits 0 through 9 in positions 2 through 8.
Names may:
* Contain more than 8 characters but will be truncated after the first 8 characters.
e Be preceded by blanks.
* Be followed by blanks after the : and before the EQU, SUB, or DEF.
Examples of proper names are:
NUMBER:
SHIFT:
REG.3:
Improper names are:
*ADD special character used
SHIFT LEFT: embedded blank, more than 8 characters
3MUXCNTL: first character not A through Z or period

2.8 Designators

A designator is used to indicate the type of constant or field being defined. Designators are:

Table 2-1 Designators and their Definitions

Designator Definition

Vv A variable field. V must be preceded by decimal digit(s)
giving an explicit length for this (i.e., the bit length).

X A “don’t care field. X must be preceded by decimal digit(s)
giving an explicit length for this field (i.e., the bit length).

Bt A constant or field whose contents will be represented
using binary digits (0 and 1)

Q# A constant or field whose contents will be represented
using octal digits (0 through 7)
A constant or field whose contents will be represented

Di#t using decimal digits (0 through 9). A D# must be
preceded by decimal digit(s) giving an explicit length
(number of bits) when representing a field.

it A constant or field whose contents will be represented
using hexadecimal digits (0 through 9, A through F)

The designators B#, Q#, D#, H# must have NO BLANKS between the letter and the pound sign (#). When used after
nV, these designators indicate that this variable field will default to this type unless a designator is given for this field
during the Assembly Phase. For example, if all variable fields are given as nVQ# in the Definition Phrase, all values
for these variable fields that are octal may be written during the Assembly Phase by writing only the necessary octal
digits.

210f 70

2.9 Examples of Designators

A DEF is used to associate bit patterns with a symbol (format name). One example is:
ADD: DEFA 4VH#, Q#7, B#01, 8X, 4D#12
ADD defines a microword format where:

* Field 1 is a variable field with an explicit length of 4 bits with a default type (but no default value) of
hexadecimal.

* Field 2 is a variable field with an implicit length of 3 bits containing the value of the octal digit 7 (bit pattern
111).

* Field 3 is a constant field with an implicit bit length of 2, containing the value of the binary digits 01 (bit
pattern 01).

* Field 4 is a “don’t care” field with an explicit length of 8 bits. The bit pattern may be 8 zeros or 8 ones (or any
8-bit binary mix) as this field is not used by this format.

. Field 5 is a constant field with an explicit length of 4 bits containing the value of the decimal digits 12 (1100).
AN EQU is used to associate a bit pattern with a symbol (constant name). One example is:
TWOK: EQUA 2048

This assigns the bit pattern 100000000000 and a length of 12 bits to the name TWOK. The 2048 is assumed to be
decimal (no reason given) and the length is taken from the rightmost bit through the leftmost bit in which a 1 appears.

Thus,
EIGHT: EQUA 8
Yields a bit pattern 1000 with a length of 4.
SIX: EQUA 6
Yields the bit pattern 110 with a length of 3.
Alternatively, by using different designators, the constant:
TWOK: EQUA 2048
Could be written:
TWOK: EQUA B#100000000000
TWOK: EQUA Q#4000
TWOK: EQUA H#800
All of these yield the bit pattern 100000000000 and a length of 12.

When a designator B#, Q#, D#, or H# is given after a V, it becomes a permanent attribute of that field and the
assembler assumes that any value specified for that field will be given in digits appropriate to the designator chosen.

These permanent designators for variable fields may be overridden when using the format during the Assembly
Phase.

Note: If a variable field has no designator given, it defaults to binary.

Structured code requires that the designator be given.

22 of 70

2.10 Fields

Each field following a definition word must:
. Be followed by a comma unless it is the last field in a format or subformat.

* Define a constant field using the designators B#, Q#, H#, or D# and the appropriate digits.

or
e Be avariable that gives a bit length and the designator V.
or
* Be a“don’t care” that gives a bit length and the designator X.
or

* Be a constant name or subformat name that has been previously declared.
e Contain a maximum of 16 bits unless it is a “don’t care” field.

Each field may be given an implicit or explicit length. An explicit length is indicated for a field by using decimal digit(s)
before the designator.

Thus,
3B#101
Indicates a field with an explicit length of 3 bits.
Decimal, variable, or “don’t care” designators require an explicit length before the designator D#, V, or X.
“Don’t care” and variable fields require an explicit length since they do not always contain a definite bit pattern.

Decimal fields require an explicit length since there is no direct correlation between the number of decimal digits
given and the number of binary bits desired for this field.

Table 2-2 Example Field Definitions

Example Description

4V Defines a variable field with the explicit length of 4 bits.

Defines a constant field with the explicit length of 5 bits and

5D#16 the bit pattern 10000

Defines a constant field with the implicit length of 5 bits and

B#10000 the bit pattern 10000

2.11 Constants

Constants are used to define fields or associate names with a specific bit pattern.
An example of a constant used to associate a name with a specific bit pattern is:
A: EQUA 3
Further references to the constant name A yields the bit pattern 11.
AN example of a constant used to define fields in a format name is:
R: DEFA 3B#011, H#7

This defines field 1 in the format named R as a constant (explicit length of 3 bits) field with the bit pattern 011. Field 2
is a constant (implicit length of 4 bits) field with the bit pattern 0111.

23 of 70

Alternatively, the R format could be written as:

R: DEFA 3Q#3, B#0111

To yield the same bit pattern as before for each field. Field 1 has an explicit length of 3 bits, while field 2 has an

implicit length of 4 bits.

2.12 Modifiers

Modifiers are place after a constant or after the designator V. After a constant they are used only to alter the value
given. When used after V, the modifiers are called attributes of that field and are permanently associated with that

field. Attributes will modify any default value given with the variable field in the Definition file and they will modify any

value substituted for this variable

Permitted modifiers and their acti

field when the format name is used in the Assembly File.

ons are:

Table 2-3 Modifiers and their Actions

Modifier

Action Performed on Preceding Constant

*

Inversion (One’s complement)

Negate the number (two’s complement)

Truncate to the left to make the value given fit into the
number of explicit bits for this field.

%

This field is to be considered an address field. Any value
given is to be right justified in the field and any bits
remaining on the left are to be filled with zeros.

The field is treated as an address within a “paged”
memory organization. This attribute permits substitution in
this regard and initiates out-of-bounds page checking
logic. Used only with variable fields as an attribute (may
not follow a default value).

Examples of correct use of modif

iers with constants:

Table 2-4 Correct Use of Modifiers with Constants

Example Description
B#101 * Yields bit pattern 010 (101 is inverted)
4D#5— Yields bit pattern 1011 (5 is two’s complemented)
6Q#357: Yield§ bit pattern 101 111 (The left bits 011 (3) are truncated, 5 and 7
remain.
12H#A5% Yields bit pattern 0000 1010 0101 (A5 is right-justified in a 12-bit field).
4B#101 Explicit length is 4 bits, only 3 bits follow the B# but no % sign (indicating
right justification) is given. ERROR
5Q#34 Explicit length is 5 bits, but the 34 generates 6 bits and no “:” has been
given to indicate that the leftmost bit is to be truncated. ERROR

24 of 70

Modifiers must:
e Appear after the value of a constant (i.e., 12H#4C% or 5Q#37:).

e Appear after the V but before the (optional) default value for a variable field (12V%Q#46) it they are to be
permanent attributes of the field. The % and Q# become permanent attributes of this variable and are also
modifiers of the default value. To modify only the default value, modifiers must follow the value
(12VQ#46%).

* Not appear with “don’t cares” (e.g., 3X% is ILLEGAL.)

e The modifiers * and — may not both be used for a field.

2.13 Modifiers as Attributes

Modifiers used in variable fields immediately following the V designator are permanent attributes of that field. Thus,
12V%*: indicates a 12-bit variable field and any value givein the Assembly File will be inverted, then right-justified if
the value to be substituted is less than the field length, or have the left bits truncated if the value to be substituted is
larger than the specified length of the field.

2.13.1 Order of Precedence

Modifiers or attributes may appear in any order but will always be processed in the following order:
(*) Inversion or (=) negation
(%) Right justification

(:) Truncation

2.13.2 Radix Base Defaults to Binary

Variable fields also use the B#, Q#, D#, and H# as attributes. Once given, the B#, Q#, D#, and H# are permanently
associated with that variable field unless overridden. If a variable field has no radix base is specified, it will default to
binary.

If the user always wants to input assembly variables in octal, each variable field in the Definition Phase should be
written as nVQ#. Then, in the Assembly Phase, the value for this field may be given as 27 and the program will
assume that these are octal digits. [Not assume — it knows because you told it.]

If, in the Assembly File, octal is not desired, the field in the Assembly File program could be written a B#101111, or
H#27, etc., to override the octal attribute set in the Definition File.

2.13.3 Precautions for H#

The attribute H#, if given with a variable field in the Definition File, may need to be repeated in the Assembly File.
This is necessary since the program cannot distinguish hexadecimal values that begin with A through F from names,
which may also begin with the letters A through F.

H# may appear as a permanent attribute for a given variable, in which case, the digits 39 could be interpreted as
hexadecimal when encountered in the Assembly Phase. However, whenever a value is encountered in the Assembly
Phase where the variable definition includes the implicit hexadecimal type (e.g., 12VH#) and the initial digit is one of
the letters “A” through “F”, the value must be preceded by the H# modifier (e.g., H#BAD) to distinguish it from a
symbol of the name (e.g., BAD:EQUA123).

2.14 Attribute $ (“paging”)

An attribute which may be used only with variable fields is the $, which indicates paged addressing.
When the $ is given with a variable field, the % and the : attributes are automatically set for that field.

The $ will indicate that this is a field whose remaining upper (left most) bits are to be compared with the
corresponding bits of the program counter (PC) after the lower (right most) bits have been substituted into the
variable (i.e., the truncated bits of this field are compared with the corresponding bits of the PC).

If the truncated bits do not agree with the corresponding bits of the PC, an error occurs.

250f 70

The desired length of the “page” is determined by the number of bits given as the width of this variable field.

Thus, if a “page” is to be 256 words deep, the variable field would be defined as 8V$. Any substitution for this field
would be truncated on the left and the remaining eight right-hand bits will be used for the address. If the truncated left
bits do not agree with the corresponding bits of the current program counter value, the substitution would attempt to
produce a jump to another page; thus an error message is generated.

For example, if the Definition File contains
JSR: 3X, 8V$, H#6B
And the Assembly File is:
ORG 0
JSR BEGIN

*
*

*

ORG 256
BEGIN: ADD

An error is generated since BEGIN = 25610 = 1 0000 0000, while the PC at JSR is 0 0000 00002 (The left bits that are
truncated do not agree).

If the “page” size is 1024 microwords, a variable address field of 10 bits should be used.

IF any label is substituted for this variable, the truncated left bits of the label are compared with the left bits of the
program counter to ensure that this label is on the same “page” as the microword.

Examples of the correct use of $:
8V$
8V$*
8V*$
8V$Q#
8VSQ#7

2.15 “Don’t Cares”

A “don’t care” is used to indicate the bits (a field) whose state (bit pattern) is irrelevant in the microword instruction in
which it appears.

form:
nX
where:

n is the number of bits (in decimal)

X indicates “don’t care”

26 of 70

“Don’t cares”:
* Are set to zero during the Definition and Assembly phase.
* May be changed to ones after the Assembly Phase by post-processing.

* Are the only fields of a DEF that may be overlayed when two format names (DEFs) are combined in the
Assembly Phase to form a complete microword.

* Are the only fields that may be greater than the 16-bit field length limit.

2.16 Variables

Variables are used to define microword fields whose contents need not be assigned until assembly time. A variable
field may be assigned a default value in the Definition File. The general forms are:

form:

nV

nV attributes

nV attributes default-value

nV attributes default-value optional-modifiers

nV default-value optional-modifiers

A variable field must:

* Be preceded by an explicit length (n) that gives (in decimal) the bit length of the field. (n < 16)

* Contain V after the length.

* End with a comma (,) if another field follows it.

* Contain a % after the V if an expression or $ is used as a substitute for this field in the Assembly File.
A variable field may:

* Contain attributes (immediately after the V), such as inversion (*), which will always invert any value given
for this field.

* Contain a default value given in binary (B#), octal (Q#), hexadecimal (H#), or decimal (D#) followed by the
desired digits.

* Contain a designator given with or without a default value which will automatically determine the default type
for this field.

* Contain modifiers after the default value. These modify only the default value and are not permanently
associated with this variable field.

* Contain a default value given as X (indicating “don’t care”) if the user wishes to overly this field during the
Assembly Phase.

* Contain either a default value of “don’t care” or an explicit default value (bit pattern) but not both.
Examples of the correct use of variable fields with a default value of “don’t care” are:
3vX
3v*X
3Vv$X
3V*$X

27 of 70

2.16.1 Correct Variables
Examples of variable fields are:

Table 2-5 Correct Field Content and Meaning

Field Content Meaning
3v A 3-bit field. The contents are variable and will be supplied when this format name is used in
the Assembly File. The field type defaults to binary.
A 3-bit field whose contents are are variable. The contents will be supplied when the format
name is used during the Assembly File.
3VQ#
3V*%
3VQ#5
3VQ#5*
3V*Q#5
Yields a 3-bit variable field with a default value of 5, inverted, then inverted again by the *
3V*Q#5* following the V. The resulting bit pattern is 101. All values substituted for this field in the
Assembly File will be inverted.

To summarize, attributes places immediately after the V are permanently attached to this field and will operate on any
default value given with the field as well as any value substituted for the field in the Assembly File.

Modifiers placed after the default value apply only to the default value.

Attributes given after a V (except % and :) may be overridden for the field by placing a modifier after the value
substituted for the field in the Assembly File.

2.16.2 Incorrect Variables

Table 2-6 Incorrect Field Content and Meaning

Field Content Meaning

3VH#7 The H#7 yields 4 bits. No : was given to
indicate that he left bit should be truncated to
fit the 3-bit field.

3:VH#7 The : is in an incorrect position. | should be
3V:H#7 or 3VH#7: depending on wether the
truncation is a permanent field attribute or a
modifier of the default value H#7).

In short, attributes must be placed immediately after the V. Modifiers must be placed immediately after the digits
given for the default value.

28 of 70

2.17 Definition File — Reserved Words

The following words are used during the assembly phase as assembler control statements and may not be used as
format names or constant names in the Definition File.

ALIGN EQU NOLIST SPACE
EJECT FF ORG TITLE
END LIST RES

2.18 Definition Phase Error Messages and Interpretations

Processing of a statement is halted when any error in that statement is detected. The next statement is then
processed and checked for errors.

AMDASM makes every effort to exactly pinpoint errors; however, certain mistakes in the Definition File such as
missing comma between fields would distort the meaning for that statement, and meaningless error messages would
occur should further processing be attempted.

The user may get AMDASM or ISIS® error messages. ISIS-11® messages will have the form:
ERROR nn PC nnn
And may be interpreted using the ISIS-11® manual.
AMMDASM o rrors will have the form:
**ERROR n {y}
where:
n is the error number
y, if present, contains an illegal character or symbol.

Errors where n 2 100 halt execution. They are listed in Chapter llI.

29 of 70

30 of 70

3 Chapterlll

3.1 Assembly Phase

The Assembly Phase reads in the source program statements, assigns values to labels and constants, then
translates the source program’s executable statements into a binary format. The Definition Phase output (a table of
format and constant names and their associated bit patterns) is used for this translation.

The user must input the instructions in the order in which they are to be executed. The user may allocate blocks of
storage, control printing, and set the program counter via non-executable assembler control instructions which are
interspersed with the executable statements.

The allowable Assembly Phase statements are as follows:

TITLE
LIST
NOLIST Assembly control words for printing.
SPACE
EJECT
ORG
RES Assembly control word for program counter control.
ALIGN
EQU Definition word for defining constants.
FF Free form definition word to establish a microword.
Executable o
References to format names from the Definition Phase.
Statements
Comments Used for documentation and program flow.
END End of the Assembly File.

In this list, only the END statement needs to be placed in a particular position (the last statement of the Assembly
File). All other items may be given (and repeated) in any order the user desires. However, with TITLE, only the latest
title will be printed at the top of subsequent tables.

310f 70

3.2 Assembly File Statements

Each statement contains an optional label followed by a control word, definition word, or format name. Some control
words, definition words and format names must be followed by a value that may be a constant, a constant name, or
an expression.

The general form of all Assembly File statements is:

form:
label: Control Word Constant
Definition Word Expression
FF Constant Name
or
Format Name Variable Field Substitute (VFS)

The Assembly File uses five general types of statements. These are listed below with their permissible control words.
e Assembler control statements (LIST, NOLIST, SPACE, EJECT, TITLE, END).
* Location counter control statements (RES, ORG, ALIGN)
* Constant definition statement (EQU).
* Executable instruction statements (format names from the Definition Phase, FF)

* Comment statements (; comment)
3.3 Assembler Control Statements

3.3.1 TITLE

All data input on the line after TITLEA will be printed at the top of each page of output. A maximum of 60 characters
may be input for a title. When a new TITLEA is encountered the list device moves to the top of the form and
succeeding pages will contain this title. The general form is:

form:
TITLEA title desired by user (alphanumeric data to be printed at the top of the page)
TITLE must:

* Begin on anew line.

* Be followed by a blank and a maximum of 60 characters.

32 0of 70

3.3.2 LIST

LIST indicates that the following statements are to be printed whenever printing the of the Assembly File input is
requested. This feature will be most useful when correcting or modifying an Assembly File. (Amdasm automatically
prints the source statements unless NOLIST is specified by the user.) The general form is:

form:

LIST

LIST must:
* Begin on anew line.
* Be followed by at least one blank or a carriage return.
* Precede the Assembly File statements that are to be printed.

* Be interspersed between complete Assembly statements.

3.3.3 NOLIST

form:

NOLIST

NOLIST must:
* Begin on a new line.
* Be followed by at least one blank or a carriage return.
* Precede the Assembly File statements that are not to be printed.

* Be interspersed between complete Assembly statements.

3.3.4 SPACE

SPACE indicates that the assembler is to leave n blank lines before printing the next source statement. The general
form is:

form:

SPACEA n

SPACE must:

* Begin on anew line.

* Be followed by a A and a decimal digit.

* Beinserted in the Assembly File at the point where the spaces are desired.

33 0of 70

3.3.5 EJECT

When EJECT is encountered, the assembler generates blank spaces on a list device so that previous date plus the
blank lines equals the specified page length (default is 66 lines). It then begins a new “page”, headed with the title.
On a printer a new page is ejected. The general form is:

form:
EJECT

EJECT must:
* Begin on anew line.

* Be followed by at least one blank or a carriage return.

3.3.6 END

END indicates that the Assembly File is complete and should be processed. The general form is:
form:
END

END must:
* Begin on a new line.
* Be the last statement in the Assembly File.

* Be followed by at least one blank or a carriage return.
3.4 Program Control Statements

3.4.1 ORG

ORG is used to set the program counter to the value given as n. The general form is:
form:
ORGAn

ORG must:
* Be followed by at least one blank or a carriage return.
* Have n specified using decimal digits unless one of the designators B#, Q#, or H# precedes the digits given.
* Be used only for setting the program counter forward.

e Be greater than or equal to the current value of the program counter.

34 of 70

ORG may:
* Contain an expression instead of n.

e Be used an unlimited number of times in the Assembly File.

3.4.2 RES

RES is used to reserve n words of memory. This increments the program counter by n. The general form is:

form:

RESA n

RES must:

* Be followed by at least one blank and n.

* Have n specified using decimal digits unless one of the designators B#, Q#, or H# precedes the digits given.
RES may:

* Contain an expression instead of n.

* Be used an unlimited number of times in the Assembly File.

3.4.3 ALIGN

ALIGN is used to set the program counter to the next value, which is an integral multiple of the value n. It is used to
align the program counter to a specific boundary such that the next microinstruction will be assembled at the next
address, which is, for example, an integral multiple of 2, 4, 8, or 16. The general form is:

form:

ALIGNA n

ALIGN must:

* Be followed by at least one blank and n.

* Have n specified using decimal digits unless one of the designators B#, Q#, or H# precedes the digits given.
ALIGN may:

e Contain an expression instead of n.

* Be used an unlimited number of times in the Assembly File.

35 0of 70

3.5 Constant Definition Statement

3.5.1 EQU

EQU is used to equate a constant name to a constant value or expression. The general form is:

form:

name: EQUA constant (or expression) [; comment]

This equates the characters given in the name position to the value of the constant or expression. Only one
expression or constant is permitted following the EQU.

COUNTER: EQUA B#1011010

sets a name “COUNTER” = 1011010 and future references to the bit pattern 1011010 may be made by using the
word COUNTER.

Each EQU must:
* Beginon anew line.
* Begin with a name:
* The name: must be followed by EQUA—blanks between the “:” and EQU are optional.
* Contain a constant or expression that represents the bit pattern for one field.
* Define a value that can be represented in 16 bits (216 — 1 maximum).
Each EQU may:
* Be followed by a semicolon and comment after the constant or expression.
* Be continued on additional lines by using / (forward slash) as the first nonblank character in those lines.

* Be used in the Assembly File as well as in the Definition File.

* Be equated to the current value of the program counter by using $ as the designator. The $ may be part of
the expression.

3.6 Executable Instruction Statements

Executable instruction statements form the body of the assembly phase program. When assembled and with the
appropriate substitution of parameters, they form the binary output code of the assembly phase.

3.6.1 Executable Instructions Using Format Names

Most executable instructions will refer to the format names established by the definition phase. Their general form is:
form:

{label:}format nameA VFS, VFS, {&format nameA VFS, VFS ...}
{VFS = variable field substitution) (& = overlay)

These formats may be used singly (with appropriate VFSs) or they may be combined (overlayed) with other formats
(and their appropriate VFSs. All cases result in the formation of a complete microword.

36 of 70

Executable Instruction Statements must:
* Begin on anew line.
¢ Contain a format name from the Definition Phase.

* Substitute a constant name, a label, a constant, or an expression for each variable field and these must be
separated by commas. If a default value was given in the Definition Phase and is used, the VFS may be
omitted.

* Contain & after all VFSs for this format name if it is to be overlayed. The format name (and its VFSs) to be
overlayed follows the &.

Executable Instruction Statements may:
* Contain a single format name or may contain an unlimited number of format names to be overlayed.

e Contain the current value of the program counter as the value for a field if $ is the VFS used for that field.
The $ may be part of an expression ($ + n) given for a VFS.

3.6.2 Free Format Statement FF

Instruction formats, which were not defined in the Definition Phase, may be defined in the Assembly Phase by using
the built-in free format command FF. The general form is:

form:

{label:} FFA field1, field2, . . ., fieldn

An Assembly File may contain an unlimited number of FFs.
Each FF must:
* Beginon anew line.
* Contain a/ (slash) as the first non-blank character if continued on another line.
* Contain a maximum of 30 fields.
* Have fields separated by commas.
* Have an explicit length given for “don’t care” fields (nX) or for fields defined using decimal (nD#n).
* Not contain a variable field.

* Not contain a constant name for a field unless that constant has been previously defined in the Assembly or
Definition file.

* Not be overlayed with another format name.
Each FF may:
* Be preceded by a label..

e Contain an expression for any field but the expression must be enclosed in parenthesis and must be
preceded by the field length “n”. For example:

o FFA5X, 10 ($-5), B#101

* The value of the expression is automatically right-justified in a field. However, if the value is larger than the
field, an error is generated unless the truncation “:” followed the “)” for this expression.

e Contain a field that has the value equal to the current value of the program counter, by using $ for that field
or using an expression containing $.

37 of 70

For example, if the contents:
WORDA 48
AZ: EQUAB#01
RB: EQUAQ#10
Were defined in the Definition File, then the Assembly File could contain the following statements:
C: EQUA H#C
XTRA: FFA 12H#3%, AZ, 18X, C, B#10111
/11X, RB
The microinstruction (binary output) for this FF is:
0000 0000 0011 01 XX XXXX XXXX XXXX XXXX 1100 10111 X 00100
121H#3% AZ 18X C B#10111 1X RB
Which will be printed in the following format:
00000000001101XX XXXXXXXXXXXXXXXX 110010111X00100

3.7 Overlaying Formats

Formats may be overlayed (combined) with other formats provided that:

* Each bit of format name (#2) that contains a one, or zero, or is part of a variable field must have that bit
specified as a “don’t care” in the format name (#1) to be overlayed. Subsequent overlays must be on the
“don’t care” fields remaining after the overlay of all preceding formats.

e Each format is a full microword in length.

For example, it the Definition file contains:
ADD: DEFA 5X, 8H#A2, 3X
REG1: DEFA B#0001, 11X
CARRY: DEFA 15X, B#1

The formats yielded are:

Format Name Format
ADD XXXX 10100010 XXX
REG1 0001 XXXXXXXX XXX
CARRY XXXX XXXXXXXX XX1

Then in the Assembly Phase

ADDREG: ADD & REG1
Yields

00001 10100010 XXX
While

ADRGCY: ADD & REG1 & CARRY
Yields

00001 10100010 XX1

38 of 70

3.8 Continuation

Any statement may be continued on additional lines by placing a / (slash) as the first nonblank character in those
lines.

3.9 Comment Statements

Comment statements are non-executable statements, which are used to provide information about the program
variables or the program flow. A comment may be a full line or may follow, for example, a constant definition
statement. All characters from the semicolon to the end of the input line are not processed and serve merely as a
documentation aid. The general form is:

form:

: comment text

Note: for structured microcode, every single line gets a comment at the minimum. This methodology works. Saves
time. Aides in debug and test. Aides reviewers.

A comment may be a full or partial line. The assembler ignores all data from the semicolon to the end of the input
line.

Comments must:
* Begin with a semicolon.

* Be placed after a complete field.

3.10 Labels or Names

Labels are names are packed groups of letters and/or symbols which have an associated value. The general form is:

form:

name: definition word
or

label: format name

A name or label’s value is determined by the statement type that follows it. Thus,
Name: EQUA n

Equates the symbol “name” with the value “n”.

While
Label: format name A VFS, VFS . ..

Equates to the current value of the program counter, so that reference may be made to this location in the microcode
by using this label.

A label or name must:
* Begin with an alphabetic character (A through Z) or period (.) .

. End with a colon.

39 of 70

* Contain no more than 8 characters, exclusive of the colon. (Excess characters are truncated on the right.)
e Contain no imbedded blanks.

* Each be unique. If duplicates are given, the value given at the first occurrence is used and a warning
message is issued for each duplicate.

* Not be a reserved word.
* Buused only with:
EQUs
FFs
Executable instruction statements

When a name is defined by an EQU, the EQU source statement must precede any references to that name. Thus, if
CAT: EQUA DOG is used and DOG is defined as:

DOG: EQUA [value]
Then both EQUs must precede the use of the symbol CAT. A good general rule is to place all EQUs at the beginning
of the Assembly File program.

3.11 Entry Point Symbols
When generating Mapping PROMs the user may wish to easily obtain the program (location) counter associated with
certain portions of the microcode. These program counter value are often referred to as entry points.
Entry points are indicated in the assembly source file as:
Label: : format name A VFS, . ..
Except for the double colon, entry points are subject to all the rules applicable to labels.

A list of entry point (symbols and values) may be obtained when AMDASM is executed by requesting the MAP option
(see Chapter 4).

3.12 Constants

Constants are used with the commands EQU, ALIGN, RES, SPACE, ORG, or as variable field substitutes (VFSs).

They may be expressed in the following manner:

Form Permissible Digits Meaning
n 0 through 9 Decimal Value (default form)
B#n Oor1 Binary Value
Q#n 0 through 7 Octal Value
D#n 0 through 9 Decimal Value
H#n 0 through 9 or A through F Hexadecimal Value
$ Use the current program counter as the value (relative addressing)
3.13 Constant Lengths

The length of the constant may be given explicitly. For example:
B: EQUA 4D#8

Where
4 is the explicit length and the value is 1000

40 of 70

If an explicit length is not given, the constant is given an implicit length. The implicit length is determined by the
designator used.

Table 3-1 Implicit Length Attributes of Constants

. Implicit . ..
Expression Length Binary Value Description

B: EQUA B#1000 4 1000 E_ach bir?ary digit yields an implicit length of 1
bit per digit.

B: EQUA Q#10 6 001 000 E_ach octa)l Qigit yields an implicit length of 3
bits per digit.

. Each hexadecimal digit yields an implicit

B: EQUA H#10 8 0001 0000 length of 4 bits per digit.
The 12 is assumed to be decimal, and the

B: EQUA 12 4 1100 implicit length is counted from the rightmost
bit through the leftmost 1.

B: EQUA 3 2 11 Same as above. Implicit length 2.

B: EQUA 4 3 100 Same as above. Implicit length 3.

3.14 Constant Modifiers

Constants may have modifiers following their given value (n). Modifiers are inversion (*), negation (-), truncation (:)
and right justification (%). They must appear after the constant digits where they may be in any order but they will be
processed in the following order:

Modifier Description

*

- Inversion or negation

% Right Justification

Left Truncation

Thus, a negative constant is indicated by n- which produces the two’s complement of n.
A constant may not be modified by both inversion and negation.

If a constant including modifiers is given as a VFS, any attributes (permanent modifiers) given for that field in the
Definition File will also modify the value of the constant given.

If, for example, the Definition file contains:
A: DEF 5X, 3V*B#, 2X, 5V%H#, B#10101
Field #1 Field #2

And the Assembly File is written:
TEST: AAOO1, 9

The binary value 001 is inverted and substituted for field #1, while the 9 (Hex) is equated to binary 1001 and right
justified for field #2 resulting the microinstruction:

XXXXX 110 XX 01001 10101
If the assembly File statement is written
TEST2: AA 001%, 3*

The binary value 001 is inverted by the current * attribute, then inverted again by the * attribute in the Definition File
for Field #1. Hex 3 (binary 0011) is inverted to 1100 and right justified in Field #2.

The complete microinstruction is:
XXXXX 001 XX 01100 10101

41 0of 70

3.15 Variable Field Substitution (VFS)

When the formats are defined in the Definition File, some of the fields may be designated as variable fields. If these
fields are not given a default value during their definition or if one wishes to override the default value of one or more
fields, a substitution must be made for these fields in the Assembly File source statements.

These substitutions must obey the following rules:

3.15.1 Required Substitutions

If the variable fields are not given default values in the Definition file, values for these fields must be provided in the
assembly File source statements. If omitted, an error message will be provided, and processing of that statement
ends.

3.15.2 Substitution Separators

Each VFS (whether required or optional) represents a single field and must be separated from other VFSs by a
comma. Trailing commas may be omitted. Note that the assembler uses the commas to indicate which fields are to
be given substitute values (i.e., VFSs are positional and position is determined by the number of commas), so leading
and intermediate commas must be given.

For example, if the Definition File contains:
A: DEF 5X, 3V*B#110, 2X, 5V%H#, B#10101
Field #1 Field #2
If the assembly File statement is written 3V*B#110
TEST3: AA , 4

Field #1 will assume the default value 001 (from 3V*B#110) while field #2 will be equated to 0100 and right justified in
the 5-bit field so that field is 00100..

The complete microinstruction is:
XXXXX 001 XX 00100 10101
If the comma were omitted and
TEST4: AA 4 ; missing comma means wrong value to field #1 and no value for field #2

Were written, the assembler would try to use 4 as the VFS for field #1. Two errors are present. The 4 is not a binary
number as required for field #1, and no value is indicated for field #2. Field #2 had no explicit default value, and no
VFS is given which is an error. The indicated error would be “illegal character”, since the 4 is assumed to go with field
#1 which requires binary digits.

If, however, the user wished to input field #1 as an octal 4 and field #2 as zero, the statement could be written:
TESTS5: AA Q#4, 0
Which yields the microinstruction

XXXXX 011 XX 00000 10101
Octal 4 Hex O
Inverted right-justified

In short, when forming the microword definition, if a leading or intermediate variable field is to assume a default value
but a trailing field requires a VFS, each field to be skipped must be represented by a comma.

42 of 70

This is best explained by an example. Assume a format ADE with three variable fields, each having a default value of
zero specified in the Definition File:

ADE: DEFA 3VB#000, 3VB#000, 3VB#000

The following example illustrates fields which assume their default values and fields which are given override or

substitute values.

Resultant Microword

Instruction Definition Meaning
TEST6: ADEA ,,010 000 000 010
or Fields 1 and 2 assume their default
values, field 3 contains 010.
TEST7: ADEA ,, Q#2 000 000 010
. Fields 2 assumes its default value, field 1
TEST6: ADEA Q#4,, B#101 100 000 101 is 100, field 3 contains 101.
TEST6: ADEA B#011 011 000 000 Fields 2 and 3 assume their default

values, field 1 contains 011.

If the variable field substitutions contain modifiers, using the Definition File statement:
ADE: DEFA 3VB#000, 3VB#000, 3VB#000

The Assembly File statements for the previous example could be written as:

Resultant Microword

Instruction Definition Meaning
. . Fields 1 and 2 assume their default
TEST10: ADEA ,,101 000 000 010 values, field 3 contains 101 inverted.
Field 1 is Hex 4 (binary 0100) truncated
TEST11: ADEA H#4: 100 000 101 to 100. Fields 2 and 3 assume their

default values.

The variable fields may contain attributes in the Definition file such as:
ADE: DEFA 3V:H#0, 3V*B#000, 3V%B#000

The Assembly File statements written below now generate different data than in the previous example:

Instruction

Resultant Microword
Definition

Meaning

TEST12: ADEA ,,01*

000 111 010

Fields 1 assumes its default value 000.
Field 2 assumes the default value 111.
(000 inverted.) Field 3 is inverted to 10
then right-justified to be 010.

TEST13: ADEA 9, Q#3*, 1

001 011 001

Field 1 is binary 1001 truncated to 001.
Field 2 is octal 3 inverted to 100, then

inverted by field #2 attribute (*) to 011.
Field 3 is binary 1 right-justified to 001.

3.15.3 Fitting Variable Substitutes to Variable Fields

Any value given as a variable field substitution (VFS) must contain exactly the number of bits specified (in the
Definition Field) for the total length of the variable field unless the modifiers % (right-justify), : (truncation), or $ (paged
addressing) are given.

These modifiers may be supplied as attributes with the original field definition (Definition file) or they may be supplied
with the filed substitution value in the Assembly File.

43 of 70

3.15.4 Paged and Relative Addressing
$ is used in two ways in the Assembly file:

a) To indicate that the current value of the program counter is the value to be substituted into this field. This is
called relative addressing.

b) As an attribute to indicate that the value substituted for this field must be on the same “memory page” as the
microword into which it is substituted. This is called paged addressing.

For relative addressing, the $ alone or as part of the expression is used as a VFS.

For paged addressing, the $ may be given as an attribute of this variable field in the Definition File, or the $ may
immediately follow the VFS in the Assembly File source statement.

For example, if the Definition File contains
JSR: DEF 8X, 8V$, H#, 27, 12V
JSB: DEF 8V%D#, 8X, 8Q#013:, 12X

The Assembly File can be written:

Line #

1 JSR BEGIN, H#0BC

2 JSB MULTS$ + 5

3 JSR MULT, BEGIN$

4 JSB H#37

5 JKSB $+5
BEGIN: ADD
MULT: MPY

Line 1-3 are example of $ used for paged addressing. In Line 1, the value of the program counter where BEGIN :
appears is substituted into the first variable field of the format JSR. This value is left truncated if necessary to fit into
this 8-bit field, and any truncated left bits must be identical to the corresponding bits of the program counter
associated with Line 1.

The same type of substitution, truncation, etc. occurs for Lines 2 and 3.
Note that:

e The JSB on line 2 needs a $ after MULT if paged addressing is desired since no $ was given with that
variable field in the Definition File.

e The JSR on Line 1 needs no $ with the BEGIN since that variable field does contain a $ in the Definition
File.

e The JSR on Line 3 requires a $ after BEGIN since the second variable field did not contain a $ in the
definition file.

e OnLine 2, alabel with a $ may be part of an expression.

Line 5 is an example of relative addressing. The current value of the program counter plus 5 will be substituted for the
variable field.

Note that:

e There is no connection between the $ used for paged addressing—and the $ used as a variable field
substitute to indicate use of the current program counter value (relative addressing).

44 of 70

3.16 Hexadecimal Attribute

The designator H#, if given with a variable field in the Definition File, is a permanent attribute but may need to be
repeated in the Assembly File. This is necessary since the program cannot distinguish a hexadecimal value, which
begins with an A through F, from a label or format name.

IF H# is a permanent attribute for a variable field, the digits 39 used as a VFS would be interpreted as hexadecimal
(0011 1000) when encountered in the Assembly File. However, whenever a value is encountered in the Assembly file
where the variable definition includes the implicit hexadecimal type (e.g., 8VH#) and the digit is one of the letters “A”
through “F”, the value must be preceded by the H# designator (e.g., H#BAD) to distinguish it from a symbol of the
same name (e.g., VAD: EQU 123).

3.17 Expressions

Expression may be used when the programmer wishes to have a value calculated for a constant, address, or VFS.
An expression assumes the form:

form:
symbol operator symbol operator . . .

For example:
SBBA1+2

Is the same as SBBA 3 (and 2 are expression symbols, + is an expression operator). The expression
JMPA S -5

Yields the current value of the program counter minus 5 as the VFS for the first variable field in the format name JMP.
($ and 5 are expression symbols, - is an expression operator). The expression

EIGHT: EQUA 2*2*2
Means EIGHT = 8 (2’s are the expression symbols, *’s are an expression operators).
All arithmetic done in expressions is integer. Remainders are discarded.

The result of any expression must be a positive constant.

3.17.1 Expression Operators

Operators permitted in expressions are:

Operator Description

+ Add the value of the left symbol (the symbol on the left of the +) to the
value of the right symbol (the symbol on the right of the +)

- Subtract the value of the left symbol (the symbol on the left of the -) to
the value of the right symbol (the symbol on the right of the -)

* Multiply the left symbol by the right symbol
/ Divide the symbol on the left (dividend) by the symbol on the right
(divisor)

45 of 70

3.17.2 Order of Expression Evaluation

Expressions are always evaluated from left to right. Thus,
A-B*2

Adds A to the negative of B and multiplies this value by 2.

An expression is terminated by a comma or the end of the line except when used as a field in FF where it is enclosed
by parenthesis. To continue an expression on the next line the first nonblank character must be a slash (/). A
continuation involving a division would thus require a double forward slash (//).

3.18 Assembler Output

The Assembly Phase output consists of:
* Animage of the associated assembly file input statement and error messages.
* Optional listing of the symbol table.
* Optional listing for entry points.

* A choice of one of four types of printed listings.

Type Description

Interleaved format (INTER). One line of source code is
| printed with the corresponding line of object code printed
directly below it.

Source-only format (SRCONLY). Only the Assembly File
source statements are printed.

Object code only format (OBJONLY). Only the Assembly
Phase binary code is printed.

Block format (BLOCK). All lines of source code are printed
followed by all lines of the object code.

Each of these listings contains the location (program counter) associated with each line of the object code.

A final option is to output the binary code directly to disk for use as input to the post-processing phase. (Disk output is
independent of the listing option chosen.) The object code on the disk may then be used, for example, as input to the
post-processing phase, which might punch a paper tape in a format suitable for burning PROMs. [SIC this is 1977
remember. Today, we would input to digital DVD/CD reader on a PC set up to burn a PROM/EPROM these days or
more than likely over an internet or wireless connection which feeds directly to the unit chosen to program or “burn”
the microcode storage devices.]

3.19 Assembler Symbol Table

The symbol table contains a list of all the symbols (constant names) defined by the EQUs and all labels used on
Assembly File source statements. The symbol table also includes all the constant names and their associated values
defined using EQUSs in the Definition File.

For each symbol, the table lists the label and the program counter value of the statement where the label is defined or
if the symbol is a constant name (defined by EQU) it is followed by the value of the constant.

A symbol table is useful when errors occur due to misspelling or the omission of the colon after a label.

A sample symbol table is:

SYMBOLS
A 0001
S 0023
X 0000

Printing of the symbol table is optional and is described in the SYMBOL and NOSYMBOL section of Table 4-1.

46 of 70

3.20 Assembler Entry Point Table

The entry point table contains a list of all the entry point symbols (labels followed by ::) and their associated program
counters. These values are useful for mapping PROMs.

Printing of the entry point table is optional and is described in the MAP and NO MAP section of Table 4-1.

3.21 Assembly File — Reserved Words

The following are reserved words used by the assembler program during the Assembly Phase. These words may not
be used as labels in the Assembly File statements.

ALIGN
EJECT
END

FF

LIST
NOLIST
ORG
RES
SPACE
TITLE
Format names or constant names from the Definition File.

47 of 70

3.22 Assembly Phase Error Messages and Interpretations

48 of 70

49 of 70

3.23 Error Messages which Halt Execution

50 of 70

4 Chapter IV

4.1 AMDASM/80 Execution (The Original System)

After the user has created the Definition File and the Assembly File using the MDS text editor (or any text editor),
then AMDASM/80 can be executed. After the ISIS® operating system has issued a user prompt (i.e., a “—* character)
the microassembler is executed by entering the command: [If you are running your own meta-assembler — follow the
instructions for running it.]

—AMDASMA PHASER(filename) A {options}
PHASE1 (filename) specifies the execution of the Definition Phase using (filename) for the definition source file.
PHASE?2 (filename) specifies the execution of the Assembly Phase using (filename) for the assembly source file.
PHASE1 (filename) and PHASE2 (filename) specifies execution of both the Definition and Assembly Phases.
Thus

—AMDASMA PHASE1(:F1:DEFN) specifies execution of only the Definition Phase using the file (on drive 1)
called DEFN.

or

—AMDASMA PHASE1(:F1:DEFN) PHASE2(:F1:ASMSRC) specifies execution of the Definition and
Assembly Phases using the files (on drive 1) DEFN as the definition source file and ASMSRC as the assembly
source file.

Either PHASE 1 (or P1) or PHASEZ2 (or P2) or both must be specified following ASDASMA. The user then enters the
desired options. Options and their default values are shown in Table 4-1 (next page). The full option may be typed
(OBJECT) but only the alternate option (O) needs to be typed.

In the option table (Table 4-1), filename must be an ISIS filename of the form:
:device:name.ext
where:
:device: is optional and is :FO:, :F!;, :F2:, or :F3:
to indicate the drive on which the

diskette is mounted. If omitted, :FO: is
assumed.

name Is from 1 to 6 uppercase letters or digits
and is required.

.ext Is a period followed by 1 to 3 uppercase
letters or digits and is optional

Options need to be separated by at least one blank character for other options in the command. If an option ends with
), the blank space is not needed.

Whenever a user does not specify an option in the execution command, AMDASM will use the default given in the
preceding table.

The command language for executing AMDASM is best illustrated with examples.
—AMDASMAP1 (DEFN.SRC)P2(MUCODE.SRC)

specifies execution of both PHASE 1 and PHASE 2 using DEFN.SRC as the input file for PHASE 1 and
MUCODE.SRC for Phase 2. Defaults are selected for all other options.

—AMDASMAPHASE1 (DEFN.SRC) DEF (AM9080.DEF)

specifies execution of PHASE 1 with DEFN.SRC as the input source file and AM9080.DEF as the definition table
output file.

51 0f 70

—AMDASMAPHASE2 (MUCODE.SRC) DEF(AM9080.DEF) INTERANOSYMBOL

specifies execution of PHASE 2 with MUCODE.SRC as the input source file and AM9080.DEF as the definition table
input file, interleaved listing format, a list of entry point symbols, and no symbol table listing.

The interleaved format prints a line of source code followed by a line of object code.
The block format prints all lines of source code, then all lines of object code.
The source-only format prints only the source code.

The object-only format prints only the object code.

Table 4-1 AMDASM/80 Options

52 of 70

5 ChapterV
5.1 Sample of AMDASM/80 Processing

The capabilities of AMDASM/80 can be demonstrated by microprogramming one of the exercises from the Am2900
Learning and Evaluation kit. This kit provides a simple but complete example of a microprogrammed system.

The architecture of the kit is shown in Figure 5-1. The dashed lines outline the two LSI components, the Am2909
microprogram sequencer, and the Am2901 four-bit bit-slice microprocessor. Each microinstruction in the
microprogram memory consists of 32 bits divided into fields to control the sequencer, branch address, shift
multiplexers, and all the inputs to the Am2901. The fields and their functions are defined in Figure 5-2.

The first step in using AMDASM/80 is the creation of a set of definitions, which reflect the hardware on which the
microprogram will run. The statements in Figure 5-3 completely define, mnemonically, the fields in the kit. That is,
they implement exactly the fields and their functions for the microprocessor architecture defined in Figure 5-1, and so
may be used in writing all microprograms that aree to operate in this architecture. Figure 5-4 shows a flowchart of the
program to be written. Figure 5-5 is the AMDASM output in Block format.

Figure 5-1 Am2900 Learning and Evaluation Kit Architecture

53 of 70

Figure 5-2 Example of Fields and Functions

RAM & MUX ?
e 3 s 4 3 2 1 0
RAM
LOCATION v v7 us U us ua us v2
8T
RIS ER 3|20 |20{28| 27|26 25|2a| 23|22 21| 20]) 10 [1e]|r|ve|as]|re|lvafsz[n|fvwlos|e|s|6]|s|a|la] 2]
It
oerm on [8R3[8R2]8Ra[8Ro| Py [2y [py | P muxyt tg |ty | 16 IMuxol 1z | ay fuig | Cafts [1a | 15| As[Az| Av| Aofes |8z | 605000
FIELD BRANCH NEXT DESTINATION SOURCE
DEFINITION ADDRESS UINSTRUCTION. [MuXyf “conthoL (MXof secect | O ALy A" 8" o~
L0AD v~ R s F
CODE FUNCTION o|fF-a 3 o A o [) R+ S
1 | noTHING £ 1 A 8 1 s-R
0 |BRANCM REGISTERIFF %0
1 |BRANCH REGISTER 2|F-8 A 2 o o 2 R-$
2 |conTinue 3|F-8 F 3 o 8 3 RVS
3 |BRANCH MAP 1D SWITCHES) 4| F2-802-0|F |- 4 o A 4 RAS
4 [JUMP-TO.SUBROUTINE IF F = 0 T = . R = e
5 |JUMP.TOSUBROUTINE o T - = =
6 |RETURN.FROM.SUBROUTINE 4 e B
7 |FILE REFERENCE 7]2*-8 Fijes 4 b o 7 RYS
& |END LOOP AND POPIF F =0
9 |PUSH (ANO CONTINUE)
10 | POP (AND CONTINVE) TYPE DOWN® up*e
11 |END LOOP AND POPIF Cp e g z A e o Ry o = P
12 |BRANCH REGISTERIFF=0 | .
13 |BRANCH REGISTER IF F3 [1 ROTATE RAMg - RAM3 Gg-Q3 RAM3 ~ RAMg Q3 ~ Qg
16 |BRANCH REGISTER IF OVR 1 0 ROTATE DOUBLE RAMg ~ Q3 Qg ~RAM3 | RAM3~Qg Q- RAMg
: |SRANCHREGISTERIF Cy v4 1 1 ARITHMETIC DOUBLE | F3 (Sign) - RAM3 RAMo~0Q3 | O3~RAMp 0-Qp

54 of 70

Figure 5-3 Definition Flle

55 of 70

0| LOAD Ry=Vq

-

LOAD Rq=V,
LOAD Ry=V, [1a] rTsiincr; |
LOAD Ry=4
CLEAR R3=0

ajwinN

| s]| RoeD:D=0001 |

YES
IFF#0 s JSB 14 |

NO

(-]

R~ Ro/2
R+ D; D =0001

BN e

IFF#0 8 |

JSB 14]

w0

Ry D; D =0001

10

YES
IFF#0 0] JSB 14]

NO

10{ Ry+Ry/2
11] DECR,

= v S

|15] ReaD R svNe) |

Figure 5-4 Flowchart of Example

56 of 70

Figure 5-5 Assembly Out put Block Format

8000 AM2909 & AM2981 ,RAMF,,DZ,,0R,,R0 & DIN H#F
p0p1 AM2909 & AM29P1 ,RAMF,,DZ,,O0R,,R1 & DIN 9
0002 AM2929 & AM29P1 ,RAMF,,DZ,,O0R,,R2 & DIN 2
0003 AM2909 & AM2981 ,RAMF,,DZ,,OR,,R4 & DIN 4
2004 AM2999 & AM2981 ,RAMF,,ZB,,AND,,R3
pog5 AS: AM2909 & AM2991 ,,,DA,,AND.RD,R® & DIN 1
2006 AM2909 Al4,JSRFND & AM2901 ,RAMD,,ZB,,OR,,RD
0007 AM2909 & AM2901 ,,,DA,,AND,R1,R1 & DIN 1
2003 AM29@9 Al4,JSRFND & AM2901 ,RAMD,,ZB,,O0R,,R1
p003 AM2909 & AM29P1 ,,,DA,,AND,R2,R2 & DIN 1
#00A AM29@9 Al4,JSRFN@ & AM2901 ,RAMD,,ZB,,O0R.,R2
f00B AM2909 & AM2901 ,RAMF,,ZB, CN@,SUBR,,R4
2paC AM2909 A5,BRFND & AM2901
po0D AM2903 A15,BR & AM29Q1
POOE Al4: AM2909 ,RTS & AM29@1 ,RAMF,,ZB,CN1,ADD,,R3
POgF A15: AM29@9 A15,BR & AM2901 ,,.ZB,,OR,,R3

END

7000 XXXXPP1PX011X111 X@11XXXX@P0P1111
G001 XXXXPP1AXP11X111 X@11XXXX00P11001
0002 XXXX@P1AX011X111 XB11XXXXPD100900
0003 XXXXPP10X011X111 XP11XXXXP1200100
G004 XXXX2B10X011XP11 X1BBXXXXBB11XXXX
0605 XXXX0010X091X101 X100000000000001
0006 111091APX1A1XP11 XB1LIXXXXBOBOXXXX
0007 XXXX0P19X0P1X191 X1090201900910001
0008 1119010@X1A1XP11 XPLIXXXXAOPLXXXX
0003 XXXX0P10X0P1X101 X10001000109001
0GOA 11109180X101X011 XP11XXXXDD1OXXXX
00GB XXXX001PXP11XP11 BPBIXXXXALBOXXXX
006C P1010083XBPIXXXX XXXXXXXXXXXXXXXX
000D 11118P81XBAIXXXX XXXXXXXXXXXXXXXX
0OOE XXXX@112X011XP11 1PPBXXXXDB1LXXXX
G00F 11119291X0A1XA11 XB11XXXXBB1IXXXX

57 of 70

6 Chapter Vi

6.7 AMPROMY/80 Post Processing

When a user has completed an AMDASM assembly, the next step is to output the binary object code in a form which
corresponds with the PROM’s organization and/or may wish to punch the object code the program onto paper tapes
to be used as input to a PROM burner.

In order to understand post processing, one must know hwo the PROMs are organized in the computer memory
space.

6.2 PROM Organization

If, as an example, AMDASM has been executed using the command
—AMDASMAP1(DEF)P2(ASM)O(PRMOUT)L(:LP:)

AMDASM generates binary object code of the executable statements in the file named ASM.

This binary object code is output to a file called PRMOUT.

For example, assume that the microword is 48 bits wide and the number of executable statements is 1024.

This gives a matrix 48 wide by 1024 deep as shown in Figure 6-1.

Figure 6-1 Bit Matrix

After PROM width and depth are specified, the Bit Matrix is subdivided to yield a PROM Map where each PROM is n
bits wide by m bits deep. IF we assume that the program origin is zero for our example, the actual PROM MAP
printed might appear as shown in Figure 6-2.

Figure 6-2 Sample PROM Map

58 of 70

For example, PROMs shall be organized as shown in Figure 6-3.

Each executable instruction naturally has a program counter associated with it by virtue of its position in the program
and/or the origin(s) that were set during the assembly execution.

This breakup of the matrix is now called a PROM map, which has associated with it not only the PROMs shown, but
rows and columns as shown in Figure 6-3. We can now refer to PROM 19 by using the digits 19, or by referencing R3
for Row 3 and C5 for Column 5.

As shown in Figure 6-4, all PROMs in Row 1 are 256 (instructions) deep, but PROMs 1, 3, 5, and 6 are only 4 bits
wide, while PROMs 2 and 7 are 8 bits wide and PROM 4 is 16 bits wide.

In Row 2, all PROMs are 512 (instructions) deep and PROMs8, 10, 12, and 13 are 4 bits wide, PROMs 9 and 14 are
8 bits wide and PROM 11 is 16 bits wide.

Rows 3 and 4 are each 128 (instructions) deep; PROMs 15, 17, 19, 20, 22, 24, 26, and 27 are 4 bits wide; PROMs
16, 21, 23, and 28 are 8 bits wide; and PROMs 18 and 25 are 16 bits wide.

If the user requests printing (or punching) of PROM #1 he will obtain data that is 4 by 256.

If the user requests printing of Row 3, they will obtain data (i.e., the contents of PROMs 15 through 21) in the
following form:

4X128 8 X128 4 X128 16 X128 4 X128 4 X 128 8 X128
If the user requests printing of Column 4, they will obtain data (i.e., the contents of PROMs 4, 11, 18, and 25) that is:
16 X 256 16 X512 16 X 128 16 X 1218

59 of 70

Figure 6-3 PROM Map

Figure 6-4 Organization of PROMs

60 of 70

6.3 Post Processing Features

AMPROM/80 allows the user to specify:
e The depth (number of instructions) and width (bits of the microword) for each PROM.
e Listing or suppression of listing of the PROM MAP.
e The PROMs to be punched or not punched on paper tape in BNFF or hexadecimal format.
* Listing or suppression of listing of PROM contents.
* Listing of the PROM contents by PROM rows or PROM columns or by PROM number.
* Optional automatic inversion of all bit except the “don’t care” bits.

* Specification of “don’t care” bits to be 0 or 1.

6.4 Execution of AMPROM

To execute AMPROM, the general form of the command is:
—AMPROM {A option}

To illustrate execution of AMPROM, the command
—AMPROMA PUNCH (:HP:)A LIST (:LP:) HEX

specifies the PROM MAP is to be printed, the content of the PROMs is to be printed, and the content of the PROMs
is to be punched in hexadecimal.

However,

—AMPROMA NOLISTA NOMAPA PINCH (:HP:)
specifies that the content of PROMs is to be punched with no listing of the PROM MAP or PROM content.
Both examples assume the AMPROM input (AMDASM output) is on the default file named AMDASM.OBJ.

Note that each option specified is preceded by a space, the options may be given in any order, and the full option
name or the alternate name may be used.

61 0of 70

Table 6-1 AMPROM/80 Options

6.5 APROM Filenames

AS part of ~AAMPROMA {options} the user may need to specify filename information. Whether filename information is
needed will depend on whether or not a filename was specified for the binary output when AMDASM was executed
[OBJECT (filename)] and whether the user wishes to receive his output at a printer, console or punched on paper
tape.

Possible options are shown in Table 6-1.

If, for example, the user executed AMDASM with the command:
—AMDASMA PHASE1(DEF) PHASE2(ASM) OBJECT (PRMOUT)

the binary output file is stored on a file called PRMOUT.

In this case when executing AMPROM, PRMOUT must be given as the input filename.
—AMDASMA OBJECT (PRMOUT)

and since no LIST or PUNCH is specified, all output will be to the default filenames.

If the user executes AMDASM with the command
—AMDASMA PHASE 1 (DEF) PHASE 2 (ASM)

62 of 70

the binary object code is output to the default file called AMDASM.OBJ.

AMPROM assumes the binary object code is stored on a file named AMDASM.OBJ if no input filename is given (i.e.,
the AMPROM input default filename is AMDASM.OBJ). Thus, in this example, the command

—AMPROM

will cause AMPROM to be executed and specifies (by default) that the binary object code is to be put from a file
named AMDASM.OBJ.

The command
—AMPROMA NOLISTA PUNCH (PRMPNC) OBJECT (PRMDAT)

specifies that listing of the PROM content is to be suppressed, the output for punching a paper tape is to be written
on a file called PRMPNC, and the input (binary object code) for execution of AMPROM is to be from a file called
PRMDAT.

This assumes the AMDASM output was stored on a file called PRMDAT.

Note that the options may be given in any order desired by the user.

6.6 Required AMPROM Input

Once AMPROM has begun execution the user will be acting interactively with the console. The user will receive
messages from the console and will be expected to input resources followed by a carriage return. The terminal will
print@the requested output of a message requesting additional input. When execution is complete, control returns to
ISIS™.

A sample of the console messages is given below. For this example, underlined letters are used to illustrate the
user’s input. Following the example is a table of the substitutes that may be used for these letters.

To begin execution the user has input —~APROM. The terminal responds by printing:
DON'T CARES? Z
For example:
DON'T CARES? 1
ENTER PROM WIDTH(S) W
For example:
ENTER PROM WIDTH(S) 4*8, 4
ENTER PROM DEPTH(S) D
For example:
ENTER PROM DEPTH(S) 128
Is a MAP listing at the output device is requested the PROM map is output here. Then the console prints
WHICH PROMS DO YOU WISH TO PRINT? Q
For example:
WHICH PROMS DO YOU WISH TO PRINT? 5-7

If printing of the PROM content was specified, the PROM content is printed here. These same PROMSs will be
punched unless NOPUNCH was specified. The punch device should be turned on before keying in the PROMs to be
printed and punched.

When paper tape punching is completed, control is returned to 1SIS®.

63 of 70

6.7 Input Substitutes Permitted

When the terminal requests information, the substitutes permitted for the letters used in the example are shown in
Table 6-2.

Table 6-2 AMPROM/80 Input Substitutes

64 of 70

6.8 BNPF Paper Tape Option

When BNPF is specified as an option, the tape is punched in the BNPF format. B is punched as the first character,
then a P (for a one) or an N (for a zero) is punched for each bit in the width of this PROM, then an F is punched as
the last character for this row of PROM data. This continues until all rows (the depth) of the PROM are punched.

Before the first BNPF for each PROM is punched, the program punches identification on the tape which consists of:
* 32 Rubouts
* 4 ASCII characters which are the PROM number
* 32 NULs to be used as the leader when loading the PROM burner tape reader

After the PROM data is punched, 40 NULS are punched to facilitate tape handling.

For example, if PROM#5 is 4 bits wide by 128 bits deep, and begins at origin zero, the paper tape will appear as
shown in Table 6-3.

Table 6-3 BNPF Paper Tape Contents

65 of 70

6.9 Hexadecimal Paper Tape Option

When punching is desired, and HEX is specified or assumed by default, the PROM contents are punched in the
DATAS I/O hexadecimal format.

The same initial data (32 Rubouts, PROM number, and 32 NULSs) is punched as is punched for the BNPF format,
followed by the PROM contents in hexadecimal.

For PROMs 4 or less bits wide, one hexadecimal character and a space is punched. For PROMs greater than 4 bits
wide, two hexadecimal characters and a space are punched. Thus, two characters, space, two characters, space,
would be punched for either 2 rows of an 8-bit PROM, or for 1 row of a 16-bit wide PROM.

Thus, if PROM #7 (16 bits x 128 words) is punched, the output will be:

Table 6-4 Hexadecimal Paper Tape Contents

66 of 70

6.10 AMPROM Error Messages

67 of 70

7 Chapter Vil
7.1 Example of AMPROM/80

Figure 7-1 is an example of AMPROM/80 for the AMD 2900 Learning & Evaluation kit.

68 of 70

69 of 70

70 of 70

